Abstract—In this paper, we propose a new transmission scheme, named as Integer Forcing-and-Forward (IFF), for communications among multi-pair multiple-antenna users in which each pair exchanges their messages with the help of a single multi-antenna relay in the multiple-access and broadcast phases. The proposed scheme utilizes Integer Forcing Linear Receiver (IFLR) at relay, which uses equations, i.e., linear integer-combinations of messages, to harness the intra-pair interference. Accordingly, we propose the design of mean squared error (MSE) based transceiver, including precoder and projection matrices for the relay and users, assuming that the perfect channel state information (CSI) is available. In this regards, in the multiple-access phase, we introduce two new MSE criteria for the related precoding and filter designs, i.e., the sum of the equations MSE (Sum-Equation MSE) and the maximum of the equations MSE (Max-Equation MSE), to exploit the equations in the relay. In addition, the convergence of the proposed criteria is proven as well. Moreover, in the broadcast phase, we use the two traditional MSE criteria, i.e., the sum of the users’ mean squared errors (Sum MSE) and the maximum of the users’ mean squared errors (Max MSE), to design the related precoding and filters for recovering relay’s equations by the users. Then, we consider a more practical scenario with imperfect CSI. For this case, IFLR receiver is modified, and another transceiver design is proposed, which take into account the effect of channels estimation error. We evaluate the performance of our proposed strategy and compare the results with the conventional amplify-and-forward (AF) and denoise-and-forward (DF) strategies for the same scenario. The results indicate the substantial superiority of the proposed strategy in terms of the outage probability and the sum rate.

Index Terms—Integer Forcing-and-Forward, Two Way Relaying, Multiple-Antenna Nodes, Transceiver Design, Equation Based MSE Criteria, Channel Estimation Error.

I. INTRODUCTION

Two way relaying communications have recently attracted considerable attentions due to their various applications. In this communication scenario, two users attempt to communicate with each other with the help of a relay. To this end, physical layer network coding (PLNC) [1] along with the conventional decode-and-forward (DF) or amplify-and-forward (AF) relaying strategies has been commonly employed [2-4] to improve the system throughput [5].

A novel relaying technique, known as compute-and-forward (CMF) [6], has been designed for multi users applications with the aim of increasing the physical layer network coding throughput. In this scheme, each relay, based on a received noisy combination of simultaneously transmitted signals of the users, attempts to recover an equation, i.e., a linear integer forced combination of users’ messages, instead of recovering each individual message separately. To enable the relay to recover the equation, the CMF scheme is usually implemented based on using a proper lattice code [7]. Since the equation coefficients are selected according to the channel coefficients, this method is also called physical layer network coding [8]. The relay then transmits the decoded equation to the destination. The destination recovers the desired messages by receiving enough number of decoded equations from the relays. In fact, in contrast to conventional AF and DF relaying techniques, the CMF method exploits rather than combats the interference towards a better network performance. By applying CMF in point-to-point MIMO systems, a linear receiver, named as integer forcing linear receiver (IFLR) has been proposed in [9] in which sufficient independent equations with maximum rate are recovered to extract the users’ messages.

A. Motivation and Related Work

Since the number of wireless communication users will continuously increase, independently designed one-pair two-way relay systems can scarcely accommodate a vast number of users. That is, with simultaneous transmission of pairs of users, the messages interfere with each other, and hence, arbitrary transmission and reception of the messages are not an efficient solution. To solve the problem, in [10-12], centralized designed MIMO multi-pair two-way transmission schemes with the help of a multi antenna relay have been proposed. In [10-11], the AF method has been utilized in the relay. That is, the relay simply amplifies and forwards the received signal. In [12], the DF relaying is used, as a scheme named Denoise-and-Forward, in which the relay after applying projection filter, first decodes each pair signal aligned messages individually and then precodes and transmits the decoded messages. The design criteria for precoder and projection filters in [10-12] is the minimization of the sum of the users’ mean squared errors (Sum MSE). In [10], the maximization of the users’ mean squared errors (Max MSE) is also considered for the transceiver design. In the simple case of single antenna one-pair two-way relay system, we have applied CMF by introducing the aligned compute-and-forward (A-CMF) scheme [13] which outperforms AF and DF based schemes significantly.
B. Contributions and Outcomes

In this paper, we consider a more general case of two-way communications that involves multiple pairs of multi-antenna source nodes considering both multiple-access and broadcast phases.

1) Integer Forcing-and-Forward: We propose a new scheme named Integer Forcing-and-Forward (IFF). We exploit the signal alignment proposed in [14-15] such that the two signals received from two users in a pair can be network coded together in the relay. Furthermore, we apply IFLR to harness the inter-pair interference in terms of equations, which is denoted as the Integer-Forcing part of IFF. In the proposed scheme, the equations are decoded with higher rate than individual messages in the relay. In addition, after transmitting all recovered equations to the users, different ways to select the equations that each user needs to recover its pair’s message can be utilized. Therefore, our scheme has two superiorities in comparison with the DF based scheme in [12], in which each pair message is recovered for the transmission to the respective user. While [16] proposes a simple sub-optimal precoder design for recovering only one equation of messages in a multi user network with a single antenna common receiver, the IFF scheme is optimally designed for MIMO multi pair two way systems. In fact, in our proposed scheme, through transmission of network coded pair messages, every user can recover its desirable message, by exploiting only a single relay in the network.

2) Equation Based MSE Criteria and Transceiver Design: In the proposed scheme, the precoder at transmitting nodes, including the users and the relay, and the projection filter at receiving nodes are designed based on minimizing the MSE criteria. For the first time, we introduce the sum of the equations’ mean squared errors (Sum-Equation MSE) and the maximum of the equations’ mean squared errors (Max-Equation MSE) criteria for the equation recovery problem associated with the multiple-access phase precoding and filter design. The main novelty of these criteria, Max-Equation MSE and Sum-Equation MSE, is in recovering the best equations instead of individual messages, which is performed by the traditional MSE criteria, i.e., the Sum MSE and the Max MSE [10, 17]. In fact, we answer these new questions: 1. How to formulate the problem considering equations? 2. How to recover and employ unknown equations? 3. How to optimize all the equations, precoders, and filters jointly? However, for the broadcast phase precoding and filter design, we use these traditional MSE criteria. By means of alternating optimization approach, we present tractable solutions for all these MSE problems. We evaluate the performance of our proposed scheme and compare the results with those of the previous methods. Our numerical results indicate that the proposed scheme substantially outperforms the previous methods in terms of the outage probability and the network throughput. In addition, the Max based MSE precoding design, using Max-Equation MSE in multiple-access phase and Max MSE in broadcast phase, shows a better performance than Sum based MSE precoding design, using Sum-Equation MSE and Sum MSE, at the expense of more complexity.

3) Integer Forcing-and-Forward with Channel Estimation Error: We extend our proposed schemes for the case of imperfect channel state information (Imperfect CSI). At first, we propose Modified IFLR, taking into account the effect of channel estimation errors in the conventional IFLR receiver structure. Then, accordingly, a robust transceiver design is proposed. Simulation results show that the robust design improves the performance of the non-robust design, based on assuming the exact knowledge of CSI at the presence of the channel estimation error.

The remainder of this paper is organized as follows. In Section II, the system model and the Integer Forcing-and-Forward scheme are briefly described. Section III presents the transceiver precoder and projection filters design by assuming that a perfect knowledge of CSI is available. In Section IV, the modified IFLR and related design are presented. Numerical results are given in Section V. Finally, Section VI concludes the paper.

Notations: The superscripts * and $\|v\|$ stand for conjugate transpose and norm of vector v, respectively. $\text{Tr}(A)$, A^T, and $(A)_i$ stand for trace, pseudo inverse, and the i-th column vector of matrix A. The symbol $|x|$ is the absolute value of the scalar x, while $\log^+(x)$ denotes $\max\{\log(x),0\}$. $\mathbb{E}\{\cdot\}$ is the expectation of a random variable x. \mathbf{I} denotes identity matrix. vec(\cdot) and mat(\cdot) represent the matrix vectorization and its inverse operation, respectively. \otimes denotes the Kronecker product.

II. SYSTEM MODEL AND INTEGER FORCING-AND-FORWARD (IFF) SCHEME

We consider a MIMO multi-pair two-way relaying system with K pairs, i.e., $2K$ users, and one relay R, as shown in Fig. 1. In this system, in each pair k, users k and $\bar{k} \triangleq K + k$ attempt to exchange their messages, i.e., messages vectors \mathbf{w}_k and $\mathbf{w}_{\bar{k}}$ each with dimension of L_k by the help of the relay R. Each user k exploits a lattice encoder with normalized power to project its message vector \mathbf{w}_k to a length-n complex-valued codeword vector \mathbf{s}_k such that $\|\mathbf{s}_k\|^2 \leq n$. We assume that user k and relay R have N_k and N_r antennas, respectively. The matrix \mathbf{H}_k denotes the channel matrix from user k to the relay, with dimension $N_r \times N_k$. The elements of \mathbf{H}_k are assumed to be independent identically distributed, i.i.d, Rayleigh variables with variance σ_k^2. User k precodes its message \mathbf{s}_k with matrix \mathbf{V}_k, with dimension $N_k \times L_k$, and transmits the precoded signal $\mathbf{x}_k = \mathbf{V}_k \mathbf{s}_k$. Since each pair k as a single system is served by the same relay, the following power constraint on the sum power is considered [11-12]:

$$\text{Tr}(\mathbf{V}_k \mathbf{V}_k^T) + \text{Tr}(\mathbf{V}_{\bar{k}} \mathbf{V}_{\bar{k}}^T) \leq P_k, \ k = 1, \ldots, K.$$ \hspace{1cm} (1)

With this constraint, the feasible region of the precoder matrices is larger in comparison with the case of separate power constraint on each pair, and hereby the performance can be improved. In addition, the related optimization problem, as will be discussed in Section III, is more tractable.

In the Integer Forcing-and-Forward (IFF) scheme, we use Multiple Access Broadcast (MABC) protocol introduced in [18]. That is, in the first time slot, named multiple access
phase, the users transmit simultaneously, and therefore, the received signal by the relay R can be written as

$$y_r = \sum_{k=1}^{K} H_k V_k s_k + z_r = \sum_{k=1}^{K} H_k V_k s_k + \sum_{k=1}^{K} H_k V_k s_k + z_r, \quad (2)$$

where z_r denotes the received noise at the relay and has Gaussian distribution with variance σ_r^2.

We use the signal alignment scheme proposed in [14-15] such that the received signals from the users in each pair k to be aligned in the relay, i.e.,

$$H_k V_k = H_k V_k, \quad k = 1, \ldots, K. \quad (3)$$

Hence, the user k pre-coder, V_k, versus its pair pre-coder, i.e., V_k, is given by [19]

$$V_k = H_k^H H_k V_k, \quad (4)$$

where H_k^H is the pseudo inverse of H_k. We can rewrite y_r as

$$y_r = \sum_{k=1}^{K} H_k V_k \hat{s}_k + z_r, \quad (5)$$

where we define $\hat{s}_k = s_k + s_k^*$, named as the k-th pair sum message. In addition, we can rewrite y_r in a different form, similar to MIMO point-to-point channel, as

$$y_r = H \hat{S} + z_r, \quad (6)$$

where $\hat{S} \triangleq [\hat{s}_1^*, \ldots, \hat{s}_K^*]^*$ and

$$H \triangleq [H_1 V_1, \ldots, H_K V_K]. \quad (7)$$

Moreover, the constrain in (1) can be rewritten as

$$\text{Tr}(V_k V_k^*) + \text{Tr}(H_k^H H_k V_k V_k^* H_k^H) \leq P_k, k = 1, \ldots, K. \quad (8)$$

From (5) and (8), the signal alignment makes it possible to consider only one user’s parameters from each pair, and therefore, the MSE based design, as will be discussed in Section III, will be less complex. Note that each user in a pair can recover the other user’s message by subtracting self-interference from the related sum pair message.

In the second time slot, named broadcast phase, considering the CMF concept, we transmit the equations of the users’ messages rather than individual messages in the DF based scheme [12]. At first, the relay recovers L, i.e., $L = L_1 + \ldots + L_K$, independent equations from the received signal y_r by applying IFLR method [9], which is developed for MIMO channels. The L independent equations, with coefficient vectors (ECVs) $a_l, l = 1, \ldots, L$, (totally shown by matrix $A \triangleq [a_1, \ldots, a_L]^*$), can be solved to recover L pair sum messages. In fact, by the signal alignment and IFLR receiver, the IFF is able to recover the messages in each node with the minimum number of equations.

The answer of the equation with ECV a_l, i.e. t_l, can be recovered by quantization of the projected received signal y_r:

$$t_l = a_l^* \hat{S} = Q(b_l^* y_r), \quad (9)$$

where $Q(.)$ denotes lattice quantizer function, and b_l, with dimension $N_r \times 1$, is the projection vector. The vector b_l is given by [9]

$$b_l^* = a_l^* H^* \left(\frac{\sigma_r^2}{2} I + HH^* \right)^{-1} H, \quad (10)$$

and the computation rate of this equation, i.e. the detecting rate, is given by [9]

$$R_l = \log_2 \left(1 + \frac{1}{\| b_l \|^2 + \| b_l H - a_l \|^2} \right), \quad \forall l. \quad (11)$$

It is noteworthy that the rate of recovering equations at the relay can be improved by employing the idea of successive interference cancellation (SIC) [20], as it is used in successive integer forcing (SIF) scheme [21] and [22]. In SIF, the equations are recovered step-by-step, and in each step, the receiver uses the previously recovered equations to increase the rate of recovering subsequent equations.

Then, the relay puts the recovered equations in vector $t = [t_1, \ldots, t_L]^*$. After projecting t with matrix W, with dimension $N_r \times L$, the relay transmits the result to the users. We consider power constraint P_r for the relay transmission, i.e.,

$$\text{Tr}(WW^*) \leq P_r. \quad (12)$$

We assume that G_k, with the dimension of $N_k \times N_r$, is the channel coefficient matrix from relay R to the user k. The elements of the matrix are assumed i.i.d Rayleigh variables with the identical variance σ_k^2. The received signal by each user k is given by

$$y_k = G_k W t + z_k, \quad (13)$$

where z_k denotes the receiver noise, having Gaussian distribution with variance σ_k^2. User k exploits projection filter Q_k, a matrix with dimension $L \times N_k$, to recover equation vector t using a traditional linear receiver as

$$\hat{t} = Q(D_k y_k). \quad (14)$$

According to (13), which shows a point-to-point MIMO channel, the rate of recovering the equation t_l by user k is given by [23]

$$R_{l,k} = \log_2 \left(1 + \frac{\| (D_k^*)^l (G_k W) \|^2}{\| (D_k^*)^l \|^2 + \sum_{j \neq l} \| (D_k^*)^j (G_k W) \|^2} \right), \quad \forall l. \quad (15)$$

Note that, similar to the mentioned scheme for the relay, the rate of recovering equations at the users can also be
Improved by exploiting SIC [20]. Therefore, the overall rate of recovering the equation with ECV \(a_t\), i.e., \(t_i\), by user \(k\) is
\[
R^k_{t_i} = \min \left(R_t, R_{l;k} \right), \tag{16}
\]
where \(R_t\) is given in (11). Each user, among received equations \(t_i\), uses the best ones with the maximum overall rate that can help the user to recover its pair’s messages.

In comparison with the DF based scheme in [12], by decoding the equations at the relay instead of the messages, not only higher rate is achieved [9], but also more flexibility is provided for the users. In fact, we can have different ways to recover the desirable messages in each pair according to the ECVs of the transmitted relay’s equations. In other words, each user has all the transmitted equations, with the goal of recovering only its pair messages. Note that, even in the worst case, each user can still recover its pair’s messages since the relay transmits independent equations in the number of all pairs’ messages. The IF scheme can be easily generalized to more than one relay. To this end, the best relay which has the best performance can be selected to forward its equations.

Comment on Complexity: The implementation complexity of IFLR and the linear MMSE receivers are nearly the same [9] and [21]. Therefore, the complexity of the IF scheme is comparable with that of the denoise-and-forward scheme. The additional complexity of the IF scheme with respect to the denoise-and-forward scheme is imposed by searching for optimal ECVs matrix \(A\). However, it should be noted that finding the optimal \(A\) is required only when the channel coefficients are changed, i.e., it is done once per coherence time of the channel. As a result for slow fading channels, i.e., when the channel coherence time is large, the added complexity is not significant.

III. MSE Based Precoding and Projection Filter Design for the Perfect Channel Knowledge

In this section, based on the proposed IF scheme, we investigate the transceiver design, i.e., finding precoding and projection Filter matrices for all the nodes to minimize the MSE. Like in [10-12], we assume that the CSI is globally and perfectly available in all nodes. According to the proposed scheme presented in Section II, we have to select the design matrices for two phases of multiple access and broadcast, separately. First, we consider the multiple-access phase, in which the users’ transmitting precoding matrix \(V_k\) and the relay’s receiving projection matrix \(B\) are optimized. Similarly, in Subsection III.B, we consider the broadcast phase, and obtain the relay’s precoder matrix \(W\) and the users’ projection matrix \(D_k\).

A. Multiple-Access Phase MSE Based Precoding and Projection Filter Design

At first, we design the related matrices in the multiple-access phase by introducing Max-Equation MSE criterion, to ensure QoS equivalency among different recovered equations. However, since some users may not use all of the equations to recover their pairs’ messages, we introduce Sum-Equation MSE criterion, which has much less complexity at the ECV search problem, as will be discussed in Subsection III.A.2.

1) Max-Equation MSE based Precoding and Projection Filter Design: From (6) and (9), the effective noise \(\varepsilon_l\) in recovering the equation \(t_l = a^* l \hat{S} \) from the projection of the received signal \(y_r\) onto vector \(b_l\) is equal to
\[
\varepsilon_l = \mathbb{E} \left\{ \left\| b^*_l y_r - a^*_l \hat{S} \right\|^2 \right\}. \tag{17}
\]
Now, the users’ precoding vectors \(V_k\), \(k = 1, \ldots, K\), equation matrix \(A\), and projection matrix \(B\), including the vectors \(b_l\) in (10), \(l = 1, \ldots, L\), must be selected so as to minimize the maximum effective noise of all of the \(L\) recovering equations, i.e.,
\[
\min_{V_k,A,B} \max_{l=1,\ldots,L} \varepsilon_l
\]
subject to
\[
\text{Tr} \left(V_k V^*_k \right) + \text{Tr} \left(H^*_k V_k V^*_l H_l \right) \leq P_k, k = 1, \ldots, K, \tag{18}
\]
where from (5) and (17), \(\varepsilon_l\) can be expanded as
\[
\varepsilon_l = \text{Tr} \left\{ \left(\sum_{i=1}^{K} H_i V_i s_i + b^*_l z_r - \sum_{i=1}^{K} a^*_l s_i \right) \right\} \times \left(\sum_{i=1}^{K} H_i V_i s_i + b^*_l z_r - \sum_{i=1}^{K} a^*_l s_i \right)^\dagger
\]
\[
= 2 \sum_{i=1}^{K} \left(b^*_l H_i V_i s_i - 2a^*_l s_i^\dagger + a^*_l a^*_l \right) + \sigma^2 b^*_l b_l, \tag{19}
\]
where \(a_{l,i}\) is the \(i\)-th pair coefficient of the \(l\)-th equation. By substituting \(b_l\) from (10) and with some straightforward simplifications, we can rewrite \(\varepsilon_l\) as
\[
\varepsilon_l = a^*_l U a_l, \tag{20}
\]
where
\[
U \triangleq I - H^* \left(\frac{\sigma^2}{2} I + H H^* \right)^{-1} H. \tag{21}
\]
Using the alternative method, we solve the given optimization problem. That is, in the first step, assuming the precoding vectors are known, the matrix \(A_{\text{opt}}\) is obtained as
\[
A_{\text{opt}} = \arg \min_{A} \max_{l=1,\ldots,L} \left(a^*_l U a_l \right), \tag{22}
\]
subject to \(a_l \in \mathbb{Z}^{2 \times K}, l = 1, \ldots, L\).

This optimization problem, named ECV search, can be solved by exact algorithms, e.g. [24]. However, for practical applications, near optimal matrix \(A\) is found efficiently in polynomial time by using the proposed schemes in [25-26].

In the second step, by substituting the values obtained at the first step for matrices \(A\) and \(B\), the precoding vectors are calculated as follows:
By introducing a new variable x that serves an upper bound on $\varepsilon l, \forall l$, the optimization problem of precoding matrices $V_k, \forall k$ can be rewritten as

$$\min_{(V_k,x)} x,$$

subject to

$$\begin{cases} \\
\varepsilon_l \leq x \\
\text{Tr}(V_k V_k^H) + \text{Tr}\left(H_k^H H_k V_k V_k^H H_k^H\right) \leq P_k, \forall k
\end{cases}$$

(23)

With definition of \mathbb{H} and V as

$$\mathbb{H} \triangleq \begin{bmatrix} H_1 & \cdots & H_K \end{bmatrix},$$

(24)

$$V \triangleq \begin{pmatrix} V_1 & 0 & \cdots & 0 \\
0 & V_2 & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & V_K \end{pmatrix},$$

(25)

ε_l in (19) can be rewritten as

$$\varepsilon_l = \sum_{i=1}^{K} 2\|V_i^* H_i^* b_l - a_{l,i}\|^2 + \sigma_l^2 \|b_l\|^2 = \|V^* \mathbb{H}^* b_l - a_l\|^2 + \sigma_l^2 \|b_l\|^2.$$

Hence, with the help of equation $\text{vec}(XYZ) = (Z^* \otimes X)\text{vec}(Y)$ in [19], this leads to

$$\varepsilon_l = \left\|\begin{bmatrix} \sigma_l \|b_l\| \\ (b_l^* \mathbb{H}^* \otimes \mathbb{I})\text{vec}(V^*) - a_l \end{bmatrix}\right\|^2.$$

(26)

Accordingly, the optimization problem of transmit precoding matrices can be rewritten as

$$\min_{(V_k,x)} x,$$

subject to

$$\begin{cases} \\
\left\|\begin{bmatrix} \sigma_l \|b_l\| \\ (b_l^* \mathbb{H}^* \otimes \mathbb{I})\text{vec}(V^*) - a_l \end{bmatrix}\right\|^2 \leq x \\
\|\text{vec}(V_k)\|^2 + \|\text{vec}(H_k^H H_k V_k)\|^2 \leq P_k, \forall k
\end{cases}$$

(28)

This optimization problem is a Second Order Cone Programming (SOCP) problem [27] due to the fact that the objective function is linear and the constraints are second order cones. It can be efficiently solved by standard SOCP solver [28] or CVX, a software package that is developed for convex optimization problems. Algorithm 1 summarizes the above procedures.

Theorem 1: The proposed Max-Equation MSE minimization algorithm is convergent.

Proof: Let $\varepsilon = \max_{i=1,\ldots,L} \varepsilon_i$, the overall MSE.

Thus, in the first step of Algorithm 1 for the iteration $j+1$, we have $\varepsilon(\mathbf{A}^{(j+1)}, \mathbf{B}^{(j+1)}, \mathbf{V}^{(j)}) \leq \varepsilon(\mathbf{A}^{(j)}, \mathbf{B}^{(j)}, \mathbf{V}^{(j)})$, and in the second step, $\varepsilon(\mathbf{A}^{(j+1)}, \mathbf{B}^{(j+1)}, \mathbf{V}^{(j+1)}) \leq \varepsilon(\mathbf{A}^{(j+1)}, \mathbf{B}^{(j+1)}, \mathbf{V}^{(j+1)})$. Hence, $\varepsilon(\mathbf{A}^{(j+1)}, \mathbf{B}^{(j+1)}, \mathbf{V}^{(j)}) \leq \varepsilon(\mathbf{A}^{(j)}, \mathbf{B}^{(j)}, \mathbf{V}^{(j)})$ at the end of iteration $j+1$. Therefore, in each iteration, the overall MSE decreases, which is lower bounded by zero. Hence, the proposed Max-MSE minimization algorithm is convergent.

Algorithm 1: Multiple-Access Phase Max-Equation based MSE Precoding and Projection Filter Design

1. ECV search: update $A^{(j+1)}$ and $B^{(j+1)}$ from (22) and (10) for fixed $V_k^{(j)}, \forall k$
2. Update $V^{(j+1)}$, i.e. $V_k^{(j+1)}, \forall k$, by solving the SOCP problem of (28) for fixed $A^{(j+1)}$ and $B^{(j+1)}$.

Until $\text{Tr}\left(\mathbf{V}^{(j)} - \mathbf{V}_k^{(j)}\right)^2 \leq \delta, \forall k$

TABLE I

<table>
<thead>
<tr>
<th>Filter Design: Multiple-Access Phase Max-Equation based MSE Precoding and Projection Filter Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize $V_k^{(0)}, \forall k$ and δ</td>
</tr>
<tr>
<td>Iterate</td>
</tr>
<tr>
<td>1. ECV search: update $A^{(j+1)}$ and $B^{(j+1)}$ from (22) and (10) for fixed $V_k^{(j)}, \forall k$</td>
</tr>
<tr>
<td>2. Update $V^{(j+1)}$, i.e. $V_k^{(j+1)}, \forall k$, by solving the SOCP problem of (28) for fixed $A^{(j+1)}$ and $B^{(j+1)}$</td>
</tr>
<tr>
<td>Until $\text{Tr}\left(\mathbf{V}^{(j)} - \mathbf{V}_k^{(j)}\right)^2 \leq \delta, \forall k$</td>
</tr>
</tbody>
</table>

2) Sum-Equation MSE based Precoding and Projection Filter Design: The optimization problem, which minimizes the total effective noise from all of the L recovering equations, can be considered as

$$\min_{V_k,A,B} \varepsilon = \sum_{l=1}^{L} E \left\{ \left\| b_l^* y_r - a_l^* \mathbf{S} \right\|^2 \right\},$$

subject to

$$\text{Tr}(V_k V_k^H) + \text{Tr}\left(H_k^H H_k V_k V_k^H H_k^H\right) \leq P_k, k = 1, \ldots, K,$$

where

$$\varepsilon = \sum_{l=1}^{L} \sum_{i=1}^{K} 2(b_l^* H_i V_i V_i^* H_i^* b_l - 2a_{l,i}^* V_i^* H_i^* b_l + a_{l,i}^* a_{l,i})$$

+ $\sigma_l^2 b_l^* b_l$,

(29)

and according to (20), we have

$$\varepsilon = \sum_{l=1}^{L} a_l^* \mathbf{U} a_l.$$

(30)

We can rewrite (31) in a simpler form as

$$\varepsilon = \text{Tr}(A^* \mathbf{U} A).$$

Again, we solve this problem by using the alternative method. In the first step, the matrix A_{opt} is obtained as

$$A_{opt} = \arg \min_{A \in \mathbb{Z}^{L \times L}} \text{Tr}(A^* \mathbf{U} A).$$

(31)

subject to

$$\begin{cases} \\
A = \begin{bmatrix} a_1^* \\
\vdots \\
a_L^* \\
\end{bmatrix}. \\
det(A) \neq 0. \\
a_l \in \mathbb{Z}, l = 1, \ldots, L.
\end{cases}$$

(32)

We can solve this problem by using the proposed schemes in [25-26] with some straightforward changes. However, since we can optimize A at once, this problem is significantly more simple and tractable than (22).

In the second step, the precoding vectors can be calculated as follows. The KKT conditions for the k-th pair precoder V_k can be written as

$$\nabla V_k \varepsilon + \mu_k \nabla V_k \left\{ \text{Tr}(V_k V_k^H) + \text{Tr}\left(H_k^H H_k V_k V_k^H H_k^H\right) - P_k \right\} = 0,$$

(33)
TABLE II
ALGORITHM 2: MULTIPLE-ACCESS PHASE SUM-EQUATION MSE BASED PRECODING AND PROJECTION FILTER DESIGN

| Initialize $V_k^{(0)}$, $\forall k$ and δ
| Iterate
| 1. ECV search: update $A^{(j+1)}$ and $B^{(j+1)}$ from (22) and (10) for fixed $V_k^{(j)}$, $\forall k$
| 2. Update $V_k^{(j+1)}$, $\forall k$ with finding $\mu_k^{(j+1)}$ for fixed $A^{(j+1)}$ and $B^{(j+1)}$
| Until $\Tr\left(\left(V_k^{(j)} - V_k^{(j)}\right)^\dagger\left(V_k^{(j)} - V_k^{(j)}\right)\right) \leq \delta, \forall k$

$\mu_k \left(\Tr(V_k V_k^\dagger) + \Tr\left(H_k^\dagger H_k V_k V_k^\dagger H_k^\dagger H_k^\dagger - P_k\right)\right) = 0, \forall k,$

(34)

where μ_k is the KKT coefficient related to the pair k. From (30) and (33), we obtain

$2 \sum_{i=1}^L (H_k^\dagger b_i H_k V_k - H_k^\dagger b_i a_{k,i}^* - H_k^\dagger b_i a_{k,i}^*) + \mu_k \left(V_k + H_k^\dagger H_k^\dagger H_k^\dagger H_k^\dagger V_k\right) = 0.$

(35)

Hence, we have

$V_k = \left(H_k^\dagger \sum_{i=1}^L b_i b_i^* H_k + \frac{1}{2\mu_k} (I + H_k^\dagger H_k^\dagger H_k^\dagger H_k^\dagger)\right)^{-1} \times \sum_{i=1}^L H_k^\dagger b_i a_{k,i}^*.$

(36)

From (4), its pair can be calculated as

$V_k = H_k^\dagger H_k \left(H_k^\dagger \sum_{i=1}^L b_i b_i^* H_k + \frac{1}{2\mu_k} (I + H_k^\dagger H_k^\dagger H_k^\dagger H_k^\dagger)\right)$

$\times \sum_{i=1}^L H_k^\dagger b_i a_{k,i}^*.$

(37)

Here, μ_k is determined from the second KKT condition given in (34). We consider two cases, namely $\mu_k = 0$ and $\mu_k > 0$ as mentioned in [27, pp. 243]. If $\mu_k = 0$, or in other words when the optimum solution is in the feasible region, we should have $\Tr(V_k (0) V_k^\dagger (0)) + \Tr(V_k (0) V_k^\dagger (0)) \leq P_k$. On the other hand, if $\mu_k > 0$, or equivalently, when the optimum solution is on the constraint border, we have $\Tr(V_k (\mu_k) V_k^\dagger (\mu_k)) + \Tr(V_k (\mu_k) V_k^\dagger (\mu_k)) = P_k = 0$. For the latter case, we can find $\mu_k > 0$ efficiently by applying the bisection optimization method [27]. The above procedures are summarized in Algorithm 2. The parameter δ used in the algorithm determines the convergence tolerance.

Theorem 2: The proposed Sum-Equation MSE minimization algorithm is convergent.

Proof: The proof is similar to the one given for Theorem 1. □

B. Broadcast Phase MSE based Precoding and Projection Filter Design

In the broadcast phase, for recovering the transmitted equations t in each user, we use traditional Sum MSE and Max MSE to design the related matrices. While Sum MSE can be unfair at recovery of the transmitted equations in different users, Max MSE guarantees the QoS of each user.

| TABLE III
| ALGORITHM 3: BROADCAST PHASE MAX MSE BASED PRECODING AND PROJECTION FILTER DESIGN

| Initialize $W_k^{(0)}$ and δ
| Iterate
| 1. Update $W_k^{(j+1)}$ by solving SOCP problem of (41) for fixed $D_k^{(j)}, \forall k$
| 2. Update $D_k^{(j+1)}, \forall k$ by solving SOCP problem of (42) for fixed $W_k^{(j+1)}$
| Until $\Tr(\left(W_k^{(j+1)} - W_k^{(j)}\right) (W_k^{(j+1)} - W_k^{(j)})^\dagger) \leq \delta$

1) **Max MSE based Precoding and Projection Filter Design:**

From (13) and (14), the decoding noise \hat{e}_k for recovering the equation vector t by each user k is equal to:

$\hat{e}_k = E\left\{||D_k y_k - t||^2\right\}.$

(38)

Now, the optimization problem, which minimizes the maximum of mean squared error of each user, can be considered as

$\min_{D_k, W_k = 1, \ldots, 2K} \max_{k} \hat{e}_k,$

subject to

$\Tr(W W^\dagger) \leq P_r.$

(39)

where with straightforward simplifications like III.A.1, \hat{e}_k is given by

$\hat{e}_k = ||\text{vec}(D_k G_k W) - \text{vec}(I)||^2 + \sigma_k^2 ||\text{vec}(D_k)||^2.$

(40)

Similar to III.A.1, this problem can be solved by the alternative optimization method. In the first step, for W_k, we consider

$\min_{x, (W, x)} \left\{ x, ||W||_x \right\}$

subject to

$\sigma_k ||\text{vec}(D_k)||^2 ||(I \otimes D_k G_k^\dagger) \text{vec}(W) - \text{vec}(I)||^2 \leq x,$

(41)

and in the second step, for $D_k, \forall k$, we consider

$\min_{x, (D, x)} \left\{ x, \sigma_k ||\text{vec}(D_k)||^2 \right\}$

subject to

$\sigma_k ||\text{vec}(D_k)||^2 ||W^\dagger G_k^\dagger \otimes I \text{vec}(D_k) - \text{vec}(I)||^2 \leq x.$

(42)

The above optimization problems are SOCP. Thus, they can be solved by standard SOCP solver. The procedure is shown in Algorithm 3.

2) **Sum MSE based Precoding and Projection Filter Design:**

The relay’s precoder matrix W_k and users’ projecting vectors D_k are selected in order to minimize the total decoding noises due to all users as:

$\min_{W, D_k} \hat{e} = \sum_{k=1}^{2K} \hat{e}_k = \sum_{k=1}^{2K} \mathbb{E}\left\{||D_k y_k - t||^2\right\},$

subject to

$\Tr(W W^\dagger) \leq P_r.$

(43)
Again, this problem is solved by the alternative optimization method. In the first step, assuming the relay precoder matrix \mathbf{W} is known, from (43), the users’ projection vectors \mathbf{d}_ks are obtained as follows:

$$\min_{\mathbf{d}_k} \hat{\varepsilon},$$

where with some simplifications, we have

$$\hat{\varepsilon} = \sum_{k=1}^{2K} \text{Tr} \{ \mathbf{d}_k \mathbf{g}_k \mathbf{W}^{\ast} \mathbf{g}_k^\ast \mathbf{d}_k^\ast - 2\mathbf{W}^{\ast} \mathbf{g}_k^\ast \mathbf{d}_k^\ast + \mathbf{I} + \sigma_g^2 \mathbf{d}_k \mathbf{d}_k^\ast \}.$$

(45)

Considering the KKT condition as

$$\nabla_{\mathbf{d}_k} \varepsilon = \mathbf{d}_k \mathbf{g}_k \mathbf{W}^{\ast} \mathbf{g}_k^\ast - \mathbf{W}^{\ast} \mathbf{g}_k^\ast \mathbf{d}_k^\ast + \sigma_g^2 \mathbf{d}_k = 0,$$

the optimum value for \mathbf{d}_k is obtained as

$$\mathbf{d}_k = \mathbf{W}^{\ast} \mathbf{g}_k^\ast \left(\mathbf{g}_k \mathbf{W} \mathbf{W}^{\ast} \mathbf{g}_k^\ast + \sigma_g^2 \mathbf{I} \right)^{-1}.$$

(47)

In the second step, by substituting \mathbf{d}_k, computed in (47), into (45), the relay precoder matrix is calculated as follows:

$$\min_{\mathbf{W}} \hat{\varepsilon},$$

subject to

$$\text{Tr} (\mathbf{W} \mathbf{W}^{\ast}) \leq P_r.$$

(48)

The KKT conditions of this problem with respect to the relay’s precoder \mathbf{W} are represented as

$$\nabla_{\mathbf{W}} \hat{\varepsilon} + \rho \nabla_{\mathbf{W}} \{ \text{Tr} (\mathbf{W} \mathbf{W}^{\ast}) - P_r \} = 0,$$

(49)

$$\rho (\text{Tr} (\mathbf{W} \mathbf{W}^{\ast}) - P_r) = 0,$$

(50)

where ρ denotes KKT coefficient related to the relay. From (45) and (49), we obtain

$$\sum_{k=1}^{2K} \left(\mathbf{g}_k^\ast \mathbf{d}_k \mathbf{g}_k \mathbf{W} - \mathbf{g}_k^\ast \mathbf{d}_k^\ast + \rho \mathbf{W} \right) = 0.$$

(51)

Hence, we have

$$\mathbf{W} = \left(\sum_{k=1}^{2K} \mathbf{g}_k^\ast \mathbf{d}_k \mathbf{g}_k + \rho \mathbf{I} \right)^{-1} \sum_{k=1}^{2K} \mathbf{g}_k^\ast \mathbf{d}_k^\ast,$$

(52)

where ρ is determined to satisfy the second KKT condition in (50) similar to the steps taken to select μ_k in Subsection III.A.2. Algorithm 4 presents the broadcast phase Sum MSE precoding and filter design.

IV. ROBUST MSE BASED PRECODING AND PROJECTION FILTER DESIGN FOR THE IMPERFECT CHANNEL KNOWLEDGE

The transceiver proposed in the previous section requires perfect CSI. However, in practice, CSI is not perfect due to factors such as channel estimation error or feedback delay. In this section, we propose a robust precoding and projection filter design for the IFF scheme with imperfect CSI. We can model the CSI error as: $\hat{\mathbf{H}}_k = \mathbf{H}_k + \mathbf{e}_k, k = 1, \ldots, 2K$ and $\hat{\mathbf{G}}_k = \mathbf{G}_k + \hat{\mathbf{e}}_k, k = 1, \ldots, 2K,$ where $\hat{\mathbf{H}}_k$ and $\hat{\mathbf{G}}_k$ are estimated channel matrices from user k to relay R and vice versa, respectively. In addition, \mathbf{e}_k and $\hat{\mathbf{e}}_k$ are the estimation error matrices for the related channels. We assume the components of error matrices \mathbf{e}_k and $\hat{\mathbf{e}}_k$ have independent Gaussian distribution with $\mathbb{E} \{ \mathbf{e}_k \mathbf{e}_k^\ast \} = \sigma_e^2 \mathbf{I}$ and $\mathbb{E} \{ \hat{\mathbf{e}}_k \hat{\mathbf{e}}_k^\ast \} = \sigma_g^2 \mathbf{I},$ respectively.

First, we introduce the modified IFLR. We then derive the optimum precoder and projection matrices in Subsection IV.B and Subsection IV.C.

A. Modified IFLR

After applying the signal alignment in each pair based on the estimated channels as

$$\hat{\mathbf{H}}_k \mathbf{v}_k = \hat{\mathbf{H}}_k \mathbf{v}_k, k = 1, \ldots, K,$$

(53)

we have

$$\mathbf{v}_k = \hat{\mathbf{H}}_k^\dagger \hat{\mathbf{H}}_k \mathbf{v}_k.$$

(54)

From (2), we can write the received signal as

$$\mathbf{y}_r = \sum_{k=1}^{2K} \hat{\mathbf{H}}_k \mathbf{v}_k \mathbf{s}_k + \sum_{k=1}^{K} \mathbf{e}_k \mathbf{v}_k \mathbf{s}_k + \sum_{k=1}^{K} \hat{\mathbf{e}}_k \mathbf{v}_k \mathbf{s}_k + \mathbf{z}_r = \hat{\mathbf{H}} \hat{\mathbf{S}} + \sum_{k=1}^{K} \mathbf{e}_k \mathbf{v}_k \mathbf{s}_k + \sum_{k=1}^{K} \hat{\mathbf{e}}_k \mathbf{v}_k \mathbf{s}_k + \mathbf{z}_r,$$

(55)

where

$$\hat{\mathbf{H}} = \begin{bmatrix} \hat{\mathbf{H}}_1 \mathbf{V}_1, \ldots, \hat{\mathbf{H}}_K \mathbf{V}_K \end{bmatrix}.$$

(56)

Similar to the Section II, to recover an equation with ECV \mathbf{a}_l, \mathbf{y}_r is projected onto vector \mathbf{b}_l, as:

$$\mathbf{b}_l^\ast \mathbf{y}_r = \mathbf{a}_l^\ast \hat{\mathbf{S}} + \left(\mathbf{b}_l^\ast \hat{\mathbf{H}} - \mathbf{a}_l^\ast \right) \hat{\mathbf{S}} + \mathbf{b}_l^\ast \mathbf{e}_k \mathbf{v}_k \mathbf{s}_k + \mathbf{b}_l^\ast \mathbf{e}_k \mathbf{v}_k \mathbf{s}_k + \mathbf{z}_r,$$

(57)

Hence, the effective noise variance for this recovering is given by

$$\varepsilon_{e,l} = \mathbb{E} \left\{ \left| \mathbf{b}_l^\ast \mathbf{y}_r - \mathbf{a}_l^\ast \hat{\mathbf{S}} \right| \right\}.$$

(58)

With some straightforward simplifications, (58) can be rewritten as
\[\varepsilon_{e,l} = \mathbb{E} \left\{ 2 \left\| \mathbf{b}_l \mathbf{a}_l - \mathbf{a}_l \right\|^2 + \sigma_h^2 \left(\sum_{k=1}^{K} \mathbf{e}_k \mathbf{V}_k \mathbf{s}_k \right) \right\} + \sigma_h^2 \left\| \mathbf{b}_l \right\|^2 \right\}. \]

(59)

Theorem 3: By considering the error matrices \(\mathbf{e}_k, k = 1, \ldots, K \) with \(\mathbb{E} \{ \mathbf{e}_k \mathbf{e}_k^H \} = \sigma^2 \mathbf{I} \) and \(\mathbb{E} \{ \mathbf{e}_k \mathbf{e}_k^H \} = 0 \forall k \neq \hat{k} \), messages \(s_k, k = 1, \ldots, K \) with \(\mathbb{E} \{ s_k s_k^H \} = 1 \) and \(\mathbb{E} \{ s_k s_k^H \} = 0, \forall k \neq \hat{k} \), matrices \(\mathbf{V}_k, k = 1, \ldots, K \), and vector \(\mathbf{b}_l \), we have

\[\mathbb{E} \left\{ \left\| \sum_{k=1}^{K} \mathbf{e}_k \mathbf{V}_k \mathbf{s}_k \right\| \right\}^2 = \sigma_h^2 \left(\sum_{k=1}^{K} \mathbb{E} \{ \text{Tr} (\mathbf{V}_k^* \mathbf{V}_k) \} \left\| \mathbf{b}_l \right\|^2 \right). \]

(60)

Proof: The proof is given in Appendix I.

According to Theorem 1, the expression in (59) becomes

\[\varepsilon_{e,l} = 2 \left\| \mathbf{H}^* \mathbf{b}_l - \mathbf{a}_l \right\|^2 + \sigma_h^2 \left(\sum_{k=1}^{K} (\mathbf{V}_k^* \mathbf{V}_k) \right) \times \left\| \mathbf{b}_l \right\|^2 + \sigma_h^2 \left\| \mathbf{b}_l \right\|^2. \]

(61)

Accordingly, the computation rate for the equation with ECV \(\mathbf{a}_l \) is given by

\[R_l = \log^+ \left(\frac{1}{\varepsilon_{e,l}} \right). \]

(62)

Note that an equation with message transmission power \(P \) and effective recovery noise variance \(N \) has computation rate \(\log^+ \left(\frac{4}{\pi} \right) \) [6].

Theorem 4: The optimum projection vector \(\mathbf{b}_k \) for recovering the equation with ECV \(\mathbf{a}_k \) is

\[\mathbf{b}_k^* = \mathbf{a}_k^H \left(\frac{\sigma_e^2}{2} \mathbf{I} + \frac{\sigma_h^2}{2} \left(\sum_{k=1}^{K} \mathbf{V}_k^* \mathbf{V}_k \right) \mathbf{I} + \mathbf{H}^* \mathbf{H} \right)^{-1} \mathbf{H}. \]

(63)

and hence, the projection matrix \(\mathbf{B} \) becomes

\[\mathbf{B} = \mathbf{A} \mathbf{H}^* \left(\frac{\sigma_e^2}{2} \mathbf{I} + \frac{\sigma_h^2}{2} \left(\sum_{k=1}^{K} \mathbf{V}_k^* \mathbf{V}_k \right) \mathbf{I} + \mathbf{H}^* \mathbf{H} \right)^{-1} \mathbf{H}. \]

(64)

Proof: The proof is given in Appendix II.

By substituting (63) into (61) and some straightforward simplifications, the effective noise variance \(\varepsilon_{e,l} \) is obtained as

\[\varepsilon_{e,l} = \mathbf{a}_l^H \mathbf{U} \mathbf{a}_l, \]

(65)

where

\[\mathbf{U} = \mathbf{I} - \mathbf{H}^* \left(\frac{\sigma_e^2}{2} \mathbf{I} + \frac{\sigma_h^2}{2} \left(\sum_{k=1}^{K} \mathbf{V}_k^* \mathbf{V}_k \right) \mathbf{I} + \mathbf{H}^* \mathbf{H} \right)^{-1} \mathbf{H}. \]

(66)

B. Robust Multiple-Access Phase based MSE Precoding and Projection Filter Design

Here, we consider Sum-Equation MSE and Max-Equation MSE criteria for transceiver design with imperfect CSI. The problems (22) and (32) get solved by considering the new \(\mathbf{U} \) in (66).

1) **Robust Max-Equation MSE based Precoding and Projection Filter Design:** From (57) and (58), the Max-Equation MSE minimization problem considering the estimated channel matrix \(\mathbf{H}_k \) can be written as

\[\min_{\mathbf{V}_k, \mathbf{A}, \mathbf{B}} \max_{l=1, \ldots, L} \varepsilon_{e,l} = \mathbb{E} \left\{ \left\| \mathbf{b}_l^H \mathbf{y}_l - \mathbf{a}_l^H \mathbf{S}_l \right\|^2 \right\} \]

subject to

\[\mathbf{Tr} (\mathbf{V}_k \mathbf{V}_k^H) + \mathbf{Tr} \left(\mathbf{H}_k^H \mathbf{H}_k \mathbf{V}_k \mathbf{V}_k^H \mathbf{H}_k^+ \right) \leq P_k. \]

(67)

The objective function in (67) can be simplified to

\[\varepsilon_{e,l} = \sum_{k=1}^{K} 2 \left\| \mathbf{V}_k^* \mathbf{H}_k^+ \mathbf{b}_l - \mathbf{a}_l \right\|^2 + \sigma_h^2 \left(\mathbf{V}_k^* \mathbf{V}_k \right) \times \left\| \mathbf{b}_l \right\|^2 + \sigma_h^2 \left\| \mathbf{b}_l \right\|^2 = \left\| \mathbf{V}_k^* \mathbf{H}_k^+ \mathbf{b}_l - \mathbf{a}_l \right\|^2 + \sigma_h^2 \left\| \mathbf{b}_l \right\|^2 \]

subject to

\[\mathbf{Tr} (\mathbf{V}_k \mathbf{V}_k^H) + \mathbf{Tr} \left(\mathbf{H}_k^H \mathbf{H}_k \mathbf{V}_k \mathbf{V}_k^H \mathbf{H}_k^+ \right) \leq P_k. \]

(68)

where

\[\mathbf{H}_k^+ \triangleq \begin{bmatrix} \mathbf{H}_k^H & \cdots & \mathbf{H}_k^H \\ \vdots & \ddots & \vdots \\ \mathbf{H}_K^H & \cdots & \mathbf{H}_K^H \end{bmatrix}, \]

(69)

\[\mathbf{\Phi} \triangleq \begin{bmatrix} \mathbf{H}_1^H & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{H}_K^H \mathbf{H}_K^H \end{bmatrix}. \]

(70)

Similar to Subsection III.A.1, the optimization problem of transmit precoding matrices \(\mathbf{V}_k, \forall k \) can be written as

\[\min_{\mathbf{V}_k, x} \]

subject to

\[\left\{ \begin{array}{c} \left\| \mathbf{b}_l^H \mathbf{H}_k^+ \mathbf{b}_l \right\|^2 + \left\| \mathbf{v}_k^* \mathbf{H}_k^+ \mathbf{V}_k \right\|^2 \leq P_k, k = 1, \ldots, K. \end{array} \right. \]

(71)

Similarly, the above optimization problem is a SOCP problem, and Algorithm 1 can be used by replacing (28) with (71).
subject to
\[\sum_{l=1}^{L} \sum_{k=1}^{K} 2(b_i^*H_kV_kV_k^*b_l - 2a_{i,l}^*b_l + a_{i,l}^*a_{i,l}) + \sigma_h^2 \sum_{k=1}^{K} (\text{Tr}(V_k^*V_k) + \text{Tr}(V_k^*V_k^*)) b_l + \sigma_b^2 b_l b_l. \]

Similar to the procedure of Subsection III.A.2, the KKT conditions lead to
\[
V_k = \left(\bar{H}_k^* \sum_{i=1}^{L} b_i b_i^* \bar{H}_k + \left(\frac{1}{2} \mu_k + \frac{\sigma_h^2}{2} \sum_{i=1}^{L} b_i^* b_i \right) \right)^{-1} \sum_{i=1}^{L} \bar{H}_k^* b_i a_{i,k},
\]

subject to
\[
\mu_k \left(\text{Tr}(V_k^*V_k^*) + \text{Tr}(\bar{H}_k^*H_k^*V_k^*^*H_k^*) - P_k \right) = 0, \forall k.
\]

The parameter \(\mu_k \) can be obtained as proposed in Subsection III.A.2. Algorithm 2 can be used by replacing (36) with (73).

C. Robust Broadcast Phase based MSE Precoding and Projection Filter Design

Here, in the second phase, we consider Sum MSE and Max MSE with imperfect CSI.

1) Robust Max MSE based Precoding and Projection Filter Design: The minimization problem defined in (38) and (39), considering the estimated channel matrix \(\hat{G}_k \) can be modified to
\[
\min_{D_k, W} \max_{k=1, \ldots, 2K} \tilde{\varepsilon}_{e,k} = \mathbb{E} \left\{ \| D_k y_k - t \|^2 \mid \hat{G}_k \right\},
\]
subject to
\[
\text{Tr}(W W^*) \leq P_r,
\]
where the \(\tilde{\varepsilon}_{e,k} \) is given by
\[
\tilde{\varepsilon}_{e,k} = \left\| \text{vec} \left(D_k \hat{G}_k W \right) - \text{vec} \left(I \right) \right\|^2 + \sigma_\theta^2 \| \text{vec}(W) \| \| \text{vec}(D_k) \| ^2 + \sigma_\delta^2 \| \text{vec}(D_k) \| ^2.
\]

This problem can be solved by the alternative optimization method. In the first step, for \(W \), we consider
\[
\min_{W, x} \| W x \|
\]
subject to
\[
\left\{ \begin{array}{c}
\sigma_k \| \text{vec}(D_k) \| \\
\left(I \otimes D_k \hat{G}_k \right) \text{vec}(W) - \text{vec}(I) \| \| \text{vec}(D_k) \| \| \text{vec}(W) \| \| \text{vec}(D_k) \| ^2 + \sigma_\delta \| \text{vec}(D_k) \| ^2 \leq P_r, k = 1, \ldots, 2K.
\end{array} \right.
\]

Similarly, the above optimization problems are SOCP. Algorithm 3 can be used by replacing (41) and (42) with (77) and (78), respectively.

2) Robust Sum MSE based Precoding and Projection Filter Design: Here, with KKT conditions on \(\tilde{\varepsilon}_{e,k} = \sum_{k=1}^{2K} \tilde{\varepsilon}_{e,k} \) similar to the solution of the problem presented in Subsection III.B.2, we have
\[
D_k = W^* \bar{G}_k^* (\bar{G}_k W W^* \bar{G}_k^* + \sigma_\theta^2 \text{Tr}(W W^*) I + \sigma_\delta^2 I)^{-1} - \text{vec}(D_k D_k^*) + \rho I \]

The parameter \(\rho \) can be obtained similar to what explained in Subsection III.B.2. Algorithm 4 can be used by replacing (47) and (52) with (79) and (80), respectively.

V. Simulation Results

In this section, we evaluate the performance of our proposed schemes and compare the results with the existing work in the literature. The Rayleigh channel parameters are equal to \(\sigma_k^2 = 1, k = 1, \ldots, 8 \). The channel noises are assumed to have a unit variance, i.e., \(\sigma_n^2 = \sigma_g^2 = 1 \). The parameter \(\delta \) in the algorithms is set to \(10^{-3} \), and the target rate \(R_t = 1 \) bit/channel use is considered.

Fig. 2 shows the MSE distribution among equations and the total MSE for the proposed Sum-Equation MSE Minimization scheme and Max-Equation MSE scheme, for a four-pair two-way system, i.e., \(K = 4 \), in which each node has four antennas, i.e., \(N_r = N_k = 4, k = 1, \ldots, 8 \), considering perfect CSI. In this figure, for simplicity, we suppose that each user sends only one message. Hence, the relay has to recover four independent equations according to the proposed algorithms. We can see that the proposed Sum-Equation MSE minimization scheme achieves the minimum total MSE, i.e., the sum of the MSE of the equations, while the proposed Max-Equation MSE scheme has less MSE for the worst equation, which has lower rate. Fig. 3 shows the average number of cases that each user utilizes less than four transmitted equations of the relay. As observed, this average is decreased by the increase of the SNR, which indicates that at high SNR using all of the transmitted equations can be more beneficial to each user. Hence, since the users recover their messages by using all of the transmitted equations with a probability higher than 0.55, we expect the Max-Equation MSE, which guarantees the MSE of the worst equation among all of the equations, to have a better performance than the Sum-Equation MSE.
Fig. 4 compares the outage probability of our proposed scheme in the case of perfect CSI with the ones introduced in [10] that uses AF relaying and in [12] that uses DF relaying, i.e. Denoise-and-Forward, for $K = 4$ and $N_r = N_k = 4, k = 1, \ldots, 8$. As it is observed, the proposed scheme has better performance in all SNRs, and provides at least 1 dB SNR improvement in comparison with the best conventional relaying scheme. In addition, the Max based MSE precoding and filter design, using Max-Equation MSE and Max MSE, performs better compared to the Sum based MSE precoding and filter design, using Sum-Equation MSE and Sum MSE, specially at high SNRs. This result justifies what we expected from Fig. 3.

In Fig. 5, the average sum rate of the proposed scheme is compared with the conventional precoding and filter designs considering the availability of perfect CSI for $K = 4$ and $N_r = N_k = 4, k = 1, \ldots, 8$. It can be observed that our proposed scheme performs significantly better than the conventional strategies in all SNRs. For example, in sum rate of 7 bit/channel use, the proposed scheme has 1.5 dB improvement in comparison with the best conventional relaying scheme. Moreover, the Max based MSE design outperforms the Sum based MSE transceiver specially at high SNRs. The results of Fig. 4 and 5 demonstrate that the use of the interference in terms of equations has significant superiority than when the interference is considered as an additional noise, like in the conventional AF and DF schemes.

Fig. 6 assesses the average sum rate of the proposed scheme for a three-pair two-way system, i.e. $K = 3$, and $N_r = N_k = 3, k = 1, \ldots, 6$. In this figure, we suppose that each user sends two messages. In sum rate of 7 bit/channel use, the proposed scheme has around 1 dB improvement in comparison with the best conventional relaying scheme. In Fig. 7, the effect of the number of antennas on each node N, i.e. $N_r = N_k = N, k = 1, \ldots, 8, K = 4$ on the performance of the system in SNR=8 dB is assessed. As can be observed and expected, the sum rate of the proposed scheme increases by higher N. In addition, the performance improvement of Max MSE than Sum MSE design increases as N grows.

In Fig. 8, we investigate the effect of channel estimation errors on the performance of the system with $K = 4$ and $N_r = N_k = 4, k = 1, \ldots, 8$, where the error power is $\sigma^2_h = \sigma^2_\theta$. The plots are provided for two precoder and filter designs, the non-robust design neglecting the presence of CSI error, and the robust design. As expected, the robust design has a better performance than the non-robust design, and the improvement becomes more by increasing the error power. For instance, when error power is 0.1, the robust design performs 2 dB better in sum rate of 6 bit/channel use, and at error power 0.4, about 4 dB better in sum rate of 4 bit/channel use. Also, as can be observed, as the error power goes up, the performance is degraded even in the robust design case. For example in sum rate of 7 bit/channel use, the design with perfect CSI has 2 dB better performance in comparison with the robust design when there is an imperfect CSI with error power 0.1, and the robust design with error power 0.1 performs significantly better than the one with error power 0.4. In addition, the Max based MSE design performs better in different error powers.

VI. CONCLUSION

In this paper, we have proposed Integer Forcing-and-Forward scheme for the MIMO multi-pair two-way relaying system based on the integer forcing linear receiver structure. We designed the precoder and projection matrices using the proposed Equation based MSE criteria, i.e. Sum-Equation MSE and Max-Equation MSE in the multiple-access phase, and conventional user based MSE criteria, i.e. Sum MSE and Max MSE in the broadcast phase. We also derived the precoder and filters design at the presence of CSI error. We have introduced modified integer forcing linear receiver to overcome the channel estimation error efficiently. For the schemes, we have proposed algorithms in which the alternative method is applied, and thus, the optimum solution can be achieved. The proposed scheme shows a significantly better performance, in terms of the sum rate and the outage probability, in comparison with conventional designs. Moreover, in the case of imperfect CSI, the proposed robust transceiver design improves the system performance compared with the non-robust design, in which the effect of channel estimation error is neglected.

![Fig. 2. The MSE of the proposed Max-Equation MSE and Sum-Equation MSE in a network with $K = 4$ and $N_r = N_k = 4, \forall k$.](image2.png)

![Fig. 3. The probability of using less than four equations by the users in a network with $K = 4$ and $N_r = N_k = 4, \forall k$.](image3.png)
Since E_x is a random vector, we have:

$$\text{Outage Probability} = 1 - \frac{1}{8} < \frac{1}{8}.$$

From (84) and the fact that $E \{ e_k e_k^T \} = \sigma^2 I$ and $E \{ e_k e_k^T \} = 0, \forall k = \tilde{k}$, we have:

$$E \{ e_k V_k V_k^T e_k^T \} = \sigma^2_b \text{Tr} (V_k^T V_k) I.$$

And therefore, this leads to:

$$E \left\{ b_l^T \sum_{k=1}^K e_k V_k V_k^T e_k^T b_l \right\} = b_l^T \left(\sigma^2_b \sum_{k=1}^K \text{Tr} (V_k^T V_k) I \right) b_l = \sigma^2_b \sum_{k=1}^K \text{Tr} (V_k^T V_k) ||b_l||^2.$$

So, the theorem is proved.

APPENDIX II

PROOF OF THEOREM 4

From (62), the optimum value of b_k is obtained by minimizing the following function:

$$E \{ x^T A^T A x \} = \text{Tr} \left(A^T A^* \right) + m^* A^* A m.$$

With expanding, we have:

$$E \left\{ \left\| b_l^T \sum_{k=1}^K e_k V_k s_k \right\|^2 \right\} = E \left\{ \left(b_l^T \sum_{k=1}^K e_k V_k s_k \right) \left(b_l^T \sum_{k=1}^K e_k V_k s_k \right)^* \right\}$$

$$= E \left\{ b_l^T \sum_{k=1}^K e_k V_k s_k \sum_{k=1}^K s_k^* V_k^* e_k^T b_l \right\}.$$

Since $E \{ s_k s_k^T \} = 1$ and $E \{ s_k s_k^T \} = 0, \forall k \neq \tilde{k}$, this leads to:

$$E \left\{ \left\| b_l^T \sum_{k=1}^K e_k V_k s_k \right\|^2 \right\} = E \left\{ b_l^T \sum_{k=1}^K e_k V_k V_k^T e_k^T b_l \right\}.$$

On the other hand, for any random vector x with mean m and covariance M, and an matrix A, we have [19]:

$$E \{ x^T A^* A x \} = \text{Tr} \left(A^* A^* \right) + m^* A^* A m.$$

The number of antennas on each node

Average Sum Rate (bit/channel use)

Max MSE
Sum MSE

Fig. 4. The outage probability of the proposed scheme in comparison with conventional schemes in a network with $K = 4$ and $N_r = N_k = 4, \forall k$ and $R_t = 1$ bit/channel use.

Fig. 5. The average sum rate of the proposed scheme in comparison with conventional schemes in a network with $K = 4$ and $N_r = N_k = 4, \forall k$.

Fig. 6. The average sum rate of the proposed scheme in comparison with conventional schemes in a network with $K = 3$ and $N_r = N_k = 3, \forall k$.

Fig. 7. The average sum rate of the proposed scheme with N antennas on each node at SNR=8 dB, i.e. $N_r = N_k = N, \forall k$, in a network with $K = 4$.

APPENDIX I

PROOF OF THEOREM 3

From (84) and the fact that $E \{ e_k e_k^T \} = \sigma^2 I$ and $E \{ e_k e_k^T \} = 0, \forall k = \tilde{k}$, we have:

$$E \{ e_k V_k V_k^T e_k^T \} = \sigma^2_b \text{Tr} (V_k^T V_k) I.$$

And therefore, this leads to:

$$E \left\{ b_l^T \sum_{k=1}^K e_k V_k V_k^T e_k^T b_l \right\} = b_l^T \left(\sigma^2_b \sum_{k=1}^K \text{Tr} (V_k^T V_k) I \right) b_l$$

$$= \sigma^2_b \sum_{k=1}^K \text{Tr} (V_k^T V_k) ||b_l||^2.$$

So, the theorem is proved.
Thus, the theorem is proved.

REFERENCES

Seyed Mohammad Azimi-Arghouyi was born in Abarkouh, Yazd, Iran. He received the B.Sc. (with honors) and the M.Sc. degrees in electrical engineering - communication systems - from Isfahan University of Technology and Sharif University of Technology, Tehran, Iran, in 2012 and 2014, respectively. His research interests are wireless communications, network coding, compute-and-forward and integer-forcing strategies, MIMO systems, and optimization theory.

Masoumeh Nasiri-Kenari (S’90, M’94, SM’12) received her B.Sc. and M.Sc. degrees in electrical engineering from Isfahan University of Technology, Isfahan, Iran, in 1986 and 1987, respectively, and her Ph.D. degree in electrical engineering from University of Utah, Salt Lake City, in 1993. From 1987 to 1988, she was a Technical Instructor and Research Assistant at Isfahan University of Technology. Since 1994, she has been with the Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran, where she is now a Professor. Dr. Nasiri-Kenari founded Wireless Research Laboratory (WRL) of the Electrical Engineering Department in 2001 to coordinate the research activities in the field of wireless communication. Current main activities of WRL are Cooperative and Cognitive Communications, Network Coding, Molecular Communications, and WBAN. From 1999 to 2001, she was a Co-Director of Advanced Communication Research Laboratory, Iran Telecommunication Research Center, Tehran, Iran. She is a recipient of Distinguished Researcher Award and Distinguished Lecturer Award of EE department at Sharif University of Technology in years 2005 and 2007, respectively. She was a visiting professor at University of Southern California (USC) during Oct. 2013-Apr. 2014, where she spent her Sabbatical leave.

Behrouz Maham (S’07, M’10, SM’15) received the B.Sc. and M.Sc. degrees in electrical engineering from the University of Tehran, Iran, in 2005 and 2007, respectively, and the Ph.D. degree from the University of Oslo, Oslo, Norway, in 2010. From September 2008 to August 2009, he was with the Department of Electrical Engineering, Stanford University, USA. He is currently an Assistant Professor with the School of Engineering, Nazarbayev University (NU). He was a faculty with the School of Electrical and Computer Engineering, University of Tehran, from Sep. 2011 to Aug. 2015. Dr. Maham has more than 80 publications in major technical journals and conferences. His fields of interest include wireless communication and networking and molecular communications.

Mohsen Hejazi received the B.Sc. and M.Sc. degrees (with the highest honors) in communication systems from Iran University of Science and Technology, Tehran, Iran, in 2007 and 2010, respectively. He is currently working toward the Ph.D. degree with the Department of Electrical Engineering, Sharif University of Technology, Tehran. Since 2010, he has been a Research Assistant with the Wireless Research Laboratory (WRL), Department of Electrical Engineering, Sharif University of Technology. He is currently a Visiting Researcher with Chalmers University of Technology, Gothenburg, Sweden. His research interests include wireless communications, cooperative and cognitive radio networks, and MIMO systems.